
CS-202 Exercises on File Systems (L06 - L07)                                                 
17.03.2025 
 
 
This exercise set covers concepts related to file systems. We advise that you work through it 
sequentially, referring back to lecture slides or videos as necessary. If anything is unclear, or if 
you could benefit from discussing a particular concept in depth, please seek an assistant’s help. 
 

 

Exercise 1: File system abstractions 

Fill in the blanks with terminology related to file system abstractions. The figure on the right is 
the file system abstraction stack, which you can refer to for hints. 

●​ Application code uses primitives like fopen and 
fread, which are implemented by Library code. 
These primitives take as input and return objects of 
type FILE *. 

●​ Library code uses syscalls (e.g., open, read, 
lseek). These take as input and return file 
descriptors, which are numerical values used to 
index open file metadata stored in a table. There is 
one such table for each process. 

 

Exercise 2: File system basics  

Mark the following sentences about inodes as true (T) or false (F). 
      (T)  Inodes store metadata related to files. 
      (T)  There may be many inodes in a file system storing information related to the same file. 
      (F)  Among other things, an inode stores the name of the file it is related to. 
      (T)  Multiple filenames can map to the same inode. 
      (F)  A process can insert entries directly into a directory inode using a write syscall. (Hint:          
            Look again at slides 32-35 that discuss the file-system interface. According to those   
            slides, how does a process add a file to a directory?) 

 

Exercise 3: Permission bits 

Below, you are given the current directory for a process, run by user ‘cancebeci’, and the file 
descriptor table for the process. You can use the man command on your terminal to look up the 
semantics of specific syscalls and flags. 



 

0 STDIN 

1 STDOUT 

2 STDERR 

3 Inode: 55, offset: 32, mode: read 

4 closed 

5 Inode: 22, offset: 4918, mode: read/write  

 
Indicate whether each syscall will succeed or fail. Assume buf is a large enough buffer and the 
open files are large enough that reads never reach the end of a file. 
 

●​ open(“./out.txt”,  O_RDWR | O_TRUNC, S_IRWXU); ​ ​ ​ will fail 
●​ open(“./out.txt”, O_CREAT | O_RDWR | O_TRUNC, S_IRWXU);​ will succeed 
●​ open(“goodbye.txt”, O_RDWR | O_TRUNC, 0); ​​ ​ ​ will fail 
●​ open(“hello.txt”, O_RDWR | O_TRUNC, 0); ​ ​ ​ ​ will fail 
●​ open(“hello.txt”, O_RDONLY | O_TRUNC, 0); ​​ ​ ​ will succeed 
●​ close(5);​ ​ ​ ​ ​ ​ ​ ​ ​ will succeed 
●​ close(4); ​ ​ ​ ​ ​ ​ ​ ​ ​ will fail 
●​ read(3, buf, 10);​​ ​ ​ ​ ​ ​ ​ will succeed 
●​ write(3, buf, 10);​​ ​ ​ ​ ​ ​ ​ will fail 
●​ write(5, buf, 10);​​ ​ ​ ​ ​ ​ ​ will succeed 

 
 

Exercise 4: Path resolution (inode walk) 

The figure below depicts a disk organization consisting of 16 blocks (numbered 0-15), where the 
inode for the root directory (“/”) is at inode 1. Block 0 is the superblock. Blocks 1-3 store the 
inode table, each block storing 4 inodes (block 1 stores inodes 0-4, block 2 stores inodes 4-7 
and block 3 stores inodes 8-12.)  
 
4.1: Write down the sequence of blocks that will be read when the user asks to read the first 
character of “/hello/world.txt”, and identify the character that will be read. 



0 1 2 3 4 5 6 7 

 [... 
(inode 1:  
   Location: 12 
    …), 
(inode 2:  
   Location: 14 
    …) ] 

[ .…  ] [ … 
(inode 8:  
   Location: 7 
    …), 
…  ] 

 “This block 
stores a text 
file … ” 
 

“00101010
010101010
010101110
01011…” 

“its.me”: inode 4 
“world.txt”: inode 2 
“baz”: inode 12 

8 9 10 11 12 13 14 15 

 “etc”: inode 4 
“pwd”: inode 5 

“This block 
stores 
another text 
file … ” 
 

 “foo”: inode 3 
“bar”: inode 7 
“hello”: inode 8 

 “!\nabcdefg 
…”  

 
●​ Block 1, to read inode 1 and find out where the directory “/” is stored. 
●​ Block 12, to look up the inode number for “/hello”. 
●​ Block 3, to read inode 8 and find out where the directory “/hello” is stored. 
●​ Block 7, to lookup the inode number for “/hello/world.txt” 
●​ Block 1, to read inode 2 and find out where the file “/hello/world.txt” is stored. 
●​ Block 14, to read the first byte, which is “!”. 

 
4.2: Which of these reads will actually trigger an interaction with the disk? Which of them may 
be served by a block cache? 

●​ Block 1, when read for the second time, can be served by the block cache. 

Exercise 5: File allocation: contiguous, linked 

Below you are given the contents of the root directory in a file system.  
 
root 
    ├── phantom_thread.mov 
    └── secrets 
        └── never_cursed.txt 
 
The file system is stored on a disk consisting of 24 blocks of size 4KB. Block 0 is the 
superblock, blocks 1-7 store inodes, and 8-23 are data blocks. The size of phantom_thread.mov 
is 12KB, and the size of never_cursed.txt is 8KB.  
 
5.1.1: Assume the file system is using contiguous allocation. Draw what the organization of the 
disk may look like. Clearly label each block with its contents (Which file, directory do they store? 
Do they include any metadata?). You can assume that directories are smaller than 4KB. 
 

0 1 2 3 4 5 6 7 



 inodes inodes inodes inodes inodes inodes inodes 

8 9 10 11 12 13 14 15 

        

16 17 18 19 20 21 22 23 

        

 
Solution: 

0 1 2 3 4 5 6 7 

      
 

  

8 9 10 11 12 13 14 15 

root secrets phantom_th
read.mov 

phantom_th
read.mov 

phantom_th
read.mov 

never_curs
ed.txt 

never_curs
ed.txt 

 

16 17 18 19 20 21 22 23 

        

 
5.1.2: What happens if the user needs to append 4KB of data to phantom_thread.mov? 
This is not possible with contiguous allocation. We would need to allocate a new file 16KB file 
and copy the existing 12KB over before appending the new 4KB. 
 
5.2.1: Assume the file system is using linked blocks for file allocation. Draw what the 
organization of the disk may look like. Clearly label each block with its contents (Which file, 
directory do they store? Do they include any metadata?). You can assume that directories are 
smaller than 4KB. 
 

0 1 2 3 4 5 6 7 

      
 

  

8 9 10 11 12 13 14 15 

root secrets phantom_th
read.mov, 
Next 
block:11 

phantom_th
read.mov 
Next 
block: 12 

phantom_th
read.mov 
Next 
block: 13 

phantom_th
read.mov 
No next 
block. 

never_curs
ed.txt 
Next 
block: 15 

never_curs
ed.txt 
Next 
block: 16 

16 17 18 19 20 21 22 23 



Never_curs
ed.txt 
No next 
block. 

       

 
5.2.2: Assume the user asked to append 4KB of data to phantom_thread.mov, and then append 
4KB of data to never_cursed.txt. Draw the organization of the disks after both operations are 
completed. 
 

0 1 2 3 4 5 6 7 

      
 

  

8 9 10 11 12 13 14 15 

root secrets phantom_th
read.mov, 
Next 
block:11 

phantom_th
read.mov 
Next 
block: 12 

phantom_th
read.mov 
Next 
block: 13 

phantom_th
read.mov 
Next 
block:17 

Never_curs
ed.txt 
Next 
block: 15 

Never_curs
ed.txt 
Next 
block: 16 

16 17 18 19 20 21 22 23 

Never_curs
ed.txt 
Next 
block: 18 

Phantom_th
read.mov, 
No next 
block. 

Never_curs
ed.txt, 
No next 
block. 

     

Exercise 6: File allocation: multi-level indexing 

Consider the multi-level indexing approach discussed in Lecture 7. Below is a brief recap and 
some problem parameters. 
 

●​ Each disk block is 4KB 
●​ Each inode contains 15 pointers.  

○​ 12 of these directly point to data blocks. 
○​ The 13th is a single-indirect pointer. It points to a block, which contains pointers 

to data blocks 
○​ The 14th is a double-indirect pointer and the 15th is a triple-indirect pointer. 

●​ Each “pointer” is 4 bytes. (By pointer, here we mean a disk block index, not C pointers - 
which are typically 8 bytes). 
 

Answer the following questions. 
 
6.1: What is the maximum file size that can be represented by an inode? 

●​ Direct pointers point to 12 x 4KB blocks, representing 48KB of data. 
●​ The single indirect pointer points to an indirect block, which can store 4KB/4 bytes = 1K 

block pointers. So it represents 1K x 4KB = 4MB of data. 



●​ The double-indirect pointer points to 1K single-indirect pointers, so it represents 1K x 
4MB = 4 GB of data. 

●​ Similarly, the triple-indirect pointer represents 4TB of data. 
●​ The maximum file size is the total, which is 4TB + 4GB + 4MB + 48 KB. 

 
6.2: How many block accesses does it take to read a data byte, including the initial access to 
the inode? You can assume that the inode walk has already been done (i.e., we already know 
the number of the inode related to the file). The answer depends on which data block the byte 
resides in. 

●​ Which one requires more block accesses, reading the first byte of the first block, or the 
last byte of the last block (assuming the file’s size is the maximum you computed in 7.1) 

○​ To read the first byte of the first block, we need to access the inode to read the 
direct pointer, then access the data block it points to. In contrast, to read the last 
byte of the last block, we need to traverse the indirection tree (i.e., read the 
triple-indirect pointer from the inode, then access the triple-indirect block, then 
access the double-indirect block, then the single-indirect block, and finally the 
data block.) 

●​ What is the minimum number of block accesses? 
○​ By the reasoning above, the minimal case is reading through a direct pointer, 

which entails two block accesses. 
●​ What is the maximum number of block accesses? 

○​ Reading through the triple-indirect pointer takes five block accesses. 
●​ Assuming the maximum file size, if all bytes are accessed uniformly randomly, what is 

the average number of block accesses? 
○​ There are  

■​ 1K x 1K x 1K (2^30) blocks that require 5 accesses 
■​ 1K x 1K (2^20) block that require 4 
■​ 1K (2^10) blocks that require 3 
■​ And 12 blocks that require 2. 

○​ The answer is  
(2^30 x 5 + 2^20 x 4 + 2^10 x 3 + 12*x 3) / (2^30 + 2^20 + 2^10 + 12) = 4.9990 

 
6.3: If we were to change the approach slightly, such that an inode contains 11 direct pointers to 
data blocks instead of 12, and in exchange, it contains an additional quadruple-indirect pointer 
(four levels of indirection), what would the maximum file size be? What is the trade-off here? 

●​ Following the rationale from 7.1, the maximum file size would be 4PB + 4TB + 4GB + 
4MB + 44 KB, where 1 PB = 1K TB. 

●​ The tradeoff is that increasing the maximum file comes at the cost of increasing the 
average number of block accesses required to read a data byte (assuming maximum file 
size).  With this setup, repeating the calculation above would yield an average close to 6. 
This approach also makes things slightly worse for smaller files. For instance reading a 
48KB file originally only used direct pointers, but now it uses single-indirect pointers for 
the last 4KB. 



Exercise 7: File system API 

Below is a C program using the file system system call API. Show the contents of the file 
descriptor table of the process running this program after each syscall. 

 
After open: 

0 STDIN 

1 STDOUT 

2 STDERR 

3 Inode: <some inode number>, 
offset: 0, mode: read 

 
After read: 

0 STDIN 

1 STDOUT 

2 STDERR 

3 Inode: <some inode number>, 
offset: 5, mode: read 

 
After seek: 

0 STDIN 

1 STDOUT 

2 STDERR 

3 Inode: <some inode number>, 
offset: 0, mode: read 

 
After close: 

0 STDIN 

1 STDOUT 



2 STDERR 

3 closed 

 
 

Exercise 8 (Advanced): File system API + fork 

Write the output of the following program. Remember that when a process forks, the file 
descriptor table is copied as-is to the child process. 

 
The fork() system call will copy the file descriptor table and so open files descriptors in both the 
parent and the child will point to the same open file structures. 

●​ lseek(fd, [off], SEEK_SET) sets the offset to [offs]. 
●​ lseek(fd, [offs], SEEK_CUR) sets the offset to current offset plus the given offset value. 

According to the definitions, one possible solution is: 
statement1: offset 10 
statement3: offset 0 
statement2: offset 20 
statement3: offset 0 
 

All processes access the same file structure, since it’s only the pointers in the fd table that are 
copied.The parent’s seek pointer starts at 0, then the first child moves it to 10 and the second 
child moves it to 0. Both the parent and child2 run the final if block. 
 
Due to the race condition, the 2nd child may run before the parent runs. If child2 runs before the 
parent, then we get the output above. 



 
The second solution is: 

statement1: offset 10 
statement2: offset 30 
statement3: offset 0 
statement3: offset 0 

Here the child1 moves the offset to 10, the parent adds 20 and moves it to 30, then it will be 
moved 
back to zero twice. Whether the parent or child2 runs the final if block first does not matter. 

Exercise 9 (Advanced): Crash consistency 

Below, you are given two disk states. Both contain inconsistencies introduced by a crash. For 
each example, identify the inconsistency and propose a fix. 
 
9.1: 

Inode bitmap  

0 0 1 0 

 

Data bitmap 

0 1 0 1 

 

inodes  

– -- i1 
Loc:  
block 1 

i2 
Loc:  
block 3 

 

Data blocks 
0 1 2 3 

– d1 – d2 

 

 
●​ The Inode bitmap says inode 3 (0-indexed) is free, but in fact the inode is used and it 

points to a valid data block.  
○​ Fix: If we can realize independently of the inode bitmap and data bitmap that i2 

and d2 are used, we could update the inode bitmap to reflect this. Otherwise, i2 
and d2 will be lost and we will assume that those blocks contain garbage. 

 
9.2: 

Inode bitmap  

0 0 1 1 

 

Data bitmap 

0 1 0 1 

 

inodes  

– -- i1 
Loc:  
block 1 

i2 
Loc:  
block 3 

 

Data blocks 
0 1 2 3 

– d1 – - 

 

 
●​ The metadata structures are consistent but the data block 3 has not been written. 

Reading the data block pointed by i2 will return garbage. 
○​ Fix: we can not restore the file. If we can realize that the data block contains 

garbage, we can free the file by deallocating the inode. 
 



Exercise 10 (Optional): Redirecting STDOUT 

Below is a C program that prints “Hello World!”. Add a few lines of code at the beginning of the 
main function, such that this program writes “Hello World!” to a new file, hello.txt, instead of 
printing to the terminal. Do not change the existing code; the goal is to get the exact same printf 
statement to write to a file. (Hint: what happens if you close STDOUT? Try writing a program 
and running it to understand this better.) 
 

#include <stdio.h> 
 
int main() { 
    // add code here 
 
    printf("Hello World!"); 
    return 0; 
} 

 
There are two important things one needs to realize for this exercise. First, “printf” writes 
through the 0th file descriptor, which refers to the standard output stream when the process is 
created. Second, “open” always allocates the lowest available file descriptor, so calling it after 
closing stdout will reassign the 0th descriptor to the newly-opened file. Then, “printf” will write to 
the file instead of STDOUT.  
 
// close the 0th file descriptor, which refers to STDOUT by default. 
close(0);​   
// open will allocate the 0th file descriptor for “hello.txt”, since 0 is the lowest 
available file descriptor. 
open(“hello.txt”, O_CREAT | O_RDWR | O_TRUNC, S_IRWXU);   
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